Distortions and the Life Cycle of Immigrant-Owned Firms

Ashantha Ranasinghe University of Alberta Lin Shao Bank of Canada

ACLMR - December 6 2024

Introduction

- Immigrants make up a large share of the population in many developed countries
 - ▶ play a key role in the labour market as workers
 - ▶ and as entrepreneurs who create jobs (our focus)
- yet, we know little about the immigrant entrepreneur experience
 - ▶ much of the evidence is based on smaller surveys
 - ▶ how do they perform relative to native-owned firms (size, profit)?
 - ▶ what industries do they select into? role of skill differences?
- do immigrant entrepreneurs face discrimination?
 - ► from the supply side (e.g. access to capital)?
 - ► from the demand side?
 - ▶ are these persistent over the life-cycle?

This paper

- We document differences between immigrant and native-owned firms in Canada
 - ► related to firm performance and discrimination ('frictions' in production)
 - ▶ at entry, and over the life-cycle
 - \blacktriangleright and its quantitative implications on immigrant entrepreneurship and on aggregate

This paper

- We document differences between immigrant and native-owned firms in Canada
 - ► related to firm performance and discrimination ('frictions' in production)
 - ▶ at entry, and over the life-cycle
 - ▶ and its quantitative implications on immigrant entrepreneurship and on aggregate
- Data: Canadian Employer-Employee Dynamics Database (CEED)
 - ► covers the universe of firms, including immigrant/native distinction
 - ► rich detail on owner characteristics
 - ► can track firms over time (panel)
- Findings:
 - \blacktriangleright immigrant firms are 30% smaller (and have lower sales, capital and profit)
 - ★ gaps narrow with time (size gap is 10% after 20 years)
 - $\,\blacktriangleright\,$ we find 'evidence' that immigrants face higher capital and consumer distortions
 - $\star\,$ capital distortions dissipate after 10+ years, consumer distortions are persistent
 - quantitatively, matters for TFP, entrepreneurship and inequality

Related Literature

• Immigrants

- ▶ Workers: Borjas (1987), Borjas (1995); Abramitzky, Boustan, Jacome and Perez (2021)
- ▶ Entrepreneurs: Fairlie, Krashinsky, Zissimopoulos and Kumar (2013); Fairlie and Lofstrom (2015)

• Misallocation:

- ► General: Restuccia and Rogerson (2008); Hsieh and Klenow (2009); Bartelsman et al. (2013)
- ► Gender: Cuberes and Teignier (2017); Chiplunkar and Goldberg (2022); Ranasinghe (2024)
- ▶ Race/caste: Tan and Zeida (2023); Bento and Hwang (2023); Goraya (2023)

• Financial Frictions:

- ► General: Buera, Kaboski and Shin (2011); Moll (2014)
- ► Gender: Morazzoni and Sy (2022)

Descriptive statistics – Ceedd

- Immigrant: born outside of Canada (and becomes a permanent resident)
 - ► first generation Canadian
- any native/immigrant differences are due to integrating and adopting social norms
 - \blacktriangleright not necessarily based on race

Descriptive statistics – Ceedd

- Immigrant: born outside of Canada (and becomes a permanent resident)
 - ► first generation Canadian
- any native/immigrant differences are due to integrating and adopting social norms
 - ▶ not necessarily based on race

	2001	2006	2011	2016
Immigrant share in population: Immigrant firm market shares:	0.20	0.21	0.22	0.23
share of firms share of sales share of capital share of workers	0.10 0.08 0.06 0.08	0.14 0.09 0.07 0.09	0.19 0.12 0.10 0.12	0.25 0.16 0.13 0.17

Notes: Covers all industries except agriculture, mining and utilities from 2001–2016 (5 million firm-year obs.). Restricted to corporations. Firm ownership based on primary owner.

 \bullet immigrants account for a sizeable share of the economy (and growing)

Firm size

Immigrant and native firm differences: pooled regression estimates

$$\log(x_i) = \beta \times \mathrm{immigrant}_i + \Lambda_i + \varepsilon_i$$

- A: gender, age (owner and firm), province, year and industry fixed-effects (4 digit)
 - \blacktriangleright we know immigrant education and experience (but not for natives)

Immigrant and native firm differences: pooled regression estimates

$$\log(x_i) = \beta \times \mathrm{immigrant}_i + \Lambda_i + \varepsilon_i$$

- Λ: gender, age (owner and firm), province, year and industry fixed-effects (4 digit)
 - ▶ we know immigrant education and experience (but not for natives)

	(1)	(2)	(3)	(4)
	Capital	Labour	Sales	Profit
Immigrant-owned firms	-0.225***	-0.255***	-0.291***	-0.239***
	(0.011)	(0.008)	(0.009)	(0.009)
$N R^2$	5,235,980	5,272,890	5,141,110	4,826,600
	0.234	0.256	0.162	0.152

 results hold when excluding micro-scale and large firms, and restricting to 'educated' immigrants

Immigrant and native firm differences: life-cycle

$$\log(x_i) = \sum_{a} \beta_a \times \mathrm{immigrant}_i \times \mathrm{age}_a + \sum_{a} \gamma_a \times \mathrm{age}_a + \Lambda_i + \varepsilon_i$$

Immigrant and native firm differences: life-cycle

$$\log(x_i) = \sum_{a} \beta_a \times \text{immigrant}_i \times \text{age}_a + \sum_{a} \gamma_a \times \text{age}_a + \Lambda_i + \varepsilon_i$$

- \bullet note: convergence among surviving firms
- similar patterns for sales and profit figures

Immigrant and native firm differences: Distortions over the life-cycle

- Do immigrant firms face higher distortions/frictions to operating?
 - $\blacktriangleright\,$ proxy using average revenue products

Immigrant and native firm differences: Distortions over the life-cycle

- Do immigrant firms face higher distortions/frictions to operating?
 - ► proxy using average revenue products

• plots for KL ratios and markup differences • figures

Immigrant and native firm differences: wages

- Do immigrant firms face pay lower wages on average?
 - ▶ wages paid per worker over the life-cycle with a similar set of controls

Immigrant and native firm differences: wages

- Do immigrant firms face pay lower wages on average?
 - ▶ wages paid per worker over the life-cycle with a similar set of controls

Model

Model Description

- Heterogeneous producers that face financial frictions (Buera, Kaboski and Shin, 2011)
 - people differ in ability and assets (z_i, a_i)
 - ► choose occupation (worker/entrepreneur)
 - \star workers earn w, entrepreneur profit rises with ability z_i
 - \star entrepreneur profit constrained by access to finance
- we assume three differences across immigrants (N_m) and natives (N_n)
 - access to capital \Rightarrow modelled as a collateral constraint $\lambda_j \in [1, \infty)$
 - ② consumer taste/discrimination on immigrant produced goods, $0 < \tau_i^y < 1$
 - **3** an 'implicit' tax on wage income, $0 < \tau_j^w < 1$
- all other features are assumed to be the same across immigrants and natives
 - ► common distribution of talent/productivity and its evolution
 - ▶ and common preferences and production technology

Model Details

• Entrepreneur problem

$$\pi(a_{ij}, z_{ij}) = \max_{k_{ij}, \ell_{ij}} (1 - \tau_j^y) y_{ij} - w\ell - (r + \delta) k_{ij}, \quad s.t. \quad k_{ij} \le \lambda_j a_{ij}$$

• occupation choice

$$E(a_{ij}, z_{ij}) = \max \{\pi(a_{ij}, z_{ij}), (1 - \tau_i^w)w\}$$

• plus the standard inter-temporal consumption-savings decisions and market clearing

QUANTITATIVE ANALYSIS (PRELIMINARY)

Calibration

We have 14 parameters to calibrate

- three parameters we normalize to 1
 - ▶ native population, and native output and wage distortion
- four parameters we set exogenously (CRRA, capital share, depreciation, imm. pop.)
- seven parameters are jointly calibrated to match data moments

we identify the frictions in our model as follows:

- native collateral constraint $\lambda_n \Rightarrow \text{ext.}$ finance to GDP ratio
- immigrant collateral constraint $\lambda_m \Rightarrow$ immigrant share of capital
- taste/discrimination of immigrant goods $\tau_m^y \Rightarrow$ immigrant share of output
 - ightharpoonup alternatively from our estimates on ARPL
- ullet distortion on immigrant wage income $\tau_m^w \Rightarrow$ native wage premium

Model fit

(some) Targeted Moments	Data	Model	Parameter
Entrepreneurship Rate	0.23	0.14	DRS = 0.8
Auto-correlation of output (1 yr.)	0.92	0.90	AR1
Auto-correlation of output (3 yr.)	0.79	0.84*	AR1
External Finance/GDP	1.54	1.55	$\lambda_n = 2.4$
Imm. share of K	0.09	0.09	$\lambda_m = 1.7$
Imm. share of Y	0.11	0.10	$\tau_m^y = 0.026$
Native wage premium	1.32	1.32	$\tau_m^w = 0.24$
Non-targeted moments			
Entrepreneurship rates:			
natives	0.14	0.14	
immigrants	0.09	0.14	
Avg. firm size (native/imm.)	1.50	1.53	
Immigrant share of:			
labour	0.10	0.11	
firms	0.15	0.17	

Life-cycle implications: most productive

- \bullet time to overcome collateral constraint (natives and immigrants)
 - ► (a) 11 and 15 periods
 - ▶ (b) 8 and 12 periods

Steady-state implications

Table: Hypothetical policies that equalize

	Benchmark	(1) Finance $\lambda_m = \lambda_n$	$ \begin{array}{c} (2) \\ \text{Demand} \\ \tau_m^y = 0 \end{array} $	(3) Both (1) & (2)	$\begin{array}{c} (4) \\ \text{Wages} \\ \tau_m^w = 0 \end{array}$
Output	_	2.0	0.7	2.2	0.6
$\overline{\text{TFP}}$	_	1.7	0.7	1.9	0.5
natives	_	-5.9	-2.4	-9.6	2.3
immigrants	_	55.7	23.2	81.6	-12.6
Immigrant share of:					
output	0.11	0.19	0.14	0.24	0.09
capital	0.09	0.20	0.13	0.25	0.07
firms	0.15	0.22	0.18	0.25	0.12

Notes: Output and TFP changes are in percentages.

- \bullet proportionally large agg. impacts (immigrants account for 21% of pop.)
- despite self-financing, access to finance is more pressing
 - ▶ hits along extensive and intensive margins

Conclusion

- We evaluate the differences between native and immigrant owned businesses
 - ▶ immigrants operate smaller firms and earn less profit (but gaps narrow with time)
 - ightharpoonup and fairly robust: education, firm size, exits, and specific regions
 - ▶ patterns are consistent with immigrants facing restricted access to finance
- TFP losses are proportionally large
 - ▶ while data shows convergence it does not account for 'exits'
- next steps:
 - more carefully identify consumer discrimination τ_m^y
 - ► differing productivity process? preferences?
 - ▶ evaluate/model specific policies related to immigration

Immigrant and native firm differences: life-cycle

$$\log(x_i) = \sum_{a} \beta_a \times \mathrm{immigrant}_i \times \mathrm{age}_a + \sum_{a} \gamma_a \times \mathrm{age}_a + \Lambda_i + \varepsilon_i$$

Immigrant and native firm differences: Distortions over the life-cycle

Inter-temporal problem and stationary equilibrium

• Consumption-savings decisions to maximize life-time utility

$$v_j(a, z) = \max_{c, a'} \left(u(c) + \beta \int_{z'} v_j(a', z') M_g(z', z), \right)$$

s.t. $c + a' = E_j(a, z) + (1 + r)a; \quad a' > 0$

- market clearing
 - entrepreneurs optimize choosing inputs and production to maximize profit
 - people choose occupation to maximize current income
 - people choose consumption and savings to maximize life-time utility
 - oprices are such that labour (native & immigrant) and capital markets clear
 - lacktriangle savings policies and stochastic productivity process generate a stationary distribution $\varphi_j(a,z)$

Stationary Equilibrium

• capital market clearing is based on

$$\sum_{j} N_{j} \int_{e_{j}(a,z)=1} k_{j}(a,z) \varphi_{j}(da,dz) = \sum_{j} N_{j} \int a\varphi(da,dz) \equiv K;$$

• labor market for natives and immigrants are based on

$$\sum_{j} N_{j} \int_{e_{j}(a,z)=1} \ell_{j}(a,z) \varphi_{j}(da,dz) = \sum_{j} N_{j} \int_{e_{j}(a,z)=0} \varphi_{j}(da,dz)$$

• goods market clearing is

$$\sum_{j} N_{j} \int c_{j}(a,z)\varphi_{j}(da,dz) + \delta K = \sum_{j} \int_{e_{j}(a,z)=1} y_{j}(a,z)\varphi_{j}(da,dz);$$

• and a stationary joint distribution $\varphi_j(a, z)$ induced by the savings policies and the stochastic process for idiosyncratic productivity shocks that satisfies;

$$\varphi_j(a,z) = \int \int_{a'(\hat{a},\hat{z}) \le a} \int_{z' \le z} M(\hat{z},dz') \varphi_j(d\hat{a},d\hat{z}).$$

▶ back